Pure projective modules over chain domains with Krull dimension

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Projective Modules over Dedekind Domains

In these notes we will first define projective modules and prove some standard properties of those modules. Then we will classify finitely generated projective modules over Dedekind domains Remark 0.1. All rings will be commutative with 1. 1. Projective modules Definition 1.1. Let R be a ring and let M be an R-module. Then M is called projective if for all surjections p : N → N ′ and a map f : ...

متن کامل

Upper bounds for noetherian dimension of all injective modules with Krull dimension

‎In this paper we give an upper bound for Noetherian dimension of all injective modules with Krull dimension on arbitrary rings‎. ‎In particular‎, ‎we also give an upper bound for Noetherian dimension of all Artinian modules on Noetherian duo rings.

متن کامل

Modules Whose Small Submodules Have Krull Dimension

The main aim of this paper is to show that an AB5 module whose small submodules have Krull dimension has a radical having Krull dimension. The proof uses the notion of dual Goldie dimension.

متن کامل

Modules over Projective Schemes

Definition 1. Let S be a graded ring, set X = ProjS and letM a graded S-module. We define a sheaf of modulesM ̃ on X as follows. For each p ∈ ProjS we have the local ring S(p) and the S(p)module M(p) (GRM,Definition 4). Let Γ(U,M ̃) be the set of all functions s : U −→ ∐p∈U M(p) with s(p) ∈M(p) for each p, which are locally fractions. That is, for every p ∈ U there is an open neighborhood p ∈ V ⊆...

متن کامل

Power Series over Generalized Krull Domains

We resolve an open problem in commutative algebra and Field Arithmetic, posed by Jarden – Let R be a generalized Krull domain. Is the ring R[[X]] of formal power series over R a generalized Krull domain? We show that the answer is negative.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2016

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2016.04.010